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Preface

The work presented in this dissertation was {inspired
by suggested improvements to a density estimation tech-
.nique developed by Major Jim Sweeder. My committee chair-
man, Dr. Albert H; Moore, was responsible for these key
ideas and many other helpful suggestions during the course
of this research. He, along with every faculty member
with whom I have dealt in my program at the Air Force
Institute of Techanology (AFIT), has shown enthusiastic
desire for each student to learn and the willingness to
help in this task. This attitude has made my stay at AFIT
quite pleasant and I am grateful.

The F-16 Systems Program Office sponsored this
research and provided support particularly in the area of
computer resources. I thank them and hope they can use
the results of this study.

My student colleagues have often been helpful with
advice and criticism. 1 particularly appreciate the
efforts of Major Max Stafford to keep me on a sound
mathematical basis, and those of Captain Ron Hinrichsen to
facilitate the implementation of some rather extensive
computer programs.

I could never have completed this task without the
loving support of my wife, Sally., 1lThere were many
difficult periods in the program but she always made thenm

easier. My children, Alison and Adam, did not always make
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things easier but d1d keep my efforts in perspective. I
love and appreciate all of then.
In many cases, the reference cited are not inclusive,

but are prominent in the field or contain extensive bib-

liographies. The Bibliography in this dissertation 1is o
more detafled than the text references and is intended to

provide a good foundation for those wishing to further

research the field of non-parametric density estimation. . 4
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Abstract

A new non-parametric probability density estimator is R

developed which has the following propertlies:

;? 1) It yields a continuous, non-negative and plecewlise

h linear estimate. ' -‘v
2) 1t converges to the true density function if the R

B true density has no more than a finite number of discon-

# tinuities of a form where the value of the function at the ,”*

discontinuity can be counsidered the average of the

f;j limiting values on efther side of the discontinuity.

3) It requires no user supplied parameters. -

The estimator is shown to have significantly better
error properties, for certain classes of distributions, ;;
than existing density estimators. The quality of the o
estimate is discussed, tabulated and graphically demon- e
strated. Applications, including parameterization, small
sample analysis, and two sample tests are presented.
These newly developed applications are shown to improve

upon the generally accepted existing techniques. Guide-

lines for choosing a density estimation method along with

L

.

an organized approach to method selection are discussed.
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I. Imntroduction.

The historical development of non-parametric prob- j;}”

-ability density function estimators stems from the histo-

gram type estimator which was inspired by John Graunt and

further developed by mathematicians such as Petty,

Huygens, van Dael and Halley (230). Density estimation
has been attempted by distinguished statisticians includ-
ing Pearson, Gossett, Fisher, Johnson, et.al.(52,143,203).
Their methods include methods of parameterization, kernel
estimators, distance estimation, entropy methods, spline
techniques and series estimators. This dissertation pre-

sents a new non-parametric density estimator,

A question which is logically addressed is: "What good
is a density estimator?” Some uses of density estimators
were discussed by Sweeder (202) and much of the work pre-
sented in this dissertation is an extension of his ground-
breaking efforts. Some other uses of density estimates
are discussed throughout this paper. The specific appli-
cations presented by Sweeder were avoided here since re-
doing them with a slightly different estimut. s2emed
rather trivial., Some new applications of density esti-
mates are presented in this dissertation. In particular,
a two-sample test 18 discussed which takes advantage of
the potentially large difference created by an unbounded

operator acting upon relatively small differences im the
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CDFs. The intent of this dissertation is to develop the
actual estimator and show the use of an estimator of this
type. Many of the "proofs"” rely on empirical evidence
-obtained from tremendously expensive Monte Carlo analysis. ;3:
In these cases only enough of the Monte Carlo runs were N
completed to demonstrate the techniques and results.

Throughout this dissertation, comparisons will be made

among results from samples from uniform, normal, and —

double exponential (Laplace) distributions. The estimator

developed 1is not limited to these, or even symmetric,

% distributions, but for comparison purposes with previous '_‘i,;;
research (226) much of the work presented here uses these iff

three distributions, which are assumed to be representa- E?j

tive of platykurtic, mesokurtic, and leptokurtic distribu- ;;;

e

tions in general. BN

The dissertation is divided into four main sections

(Chapters II-V). The first discusses the development of ;;;
the estimator {tself, the underlying theory, and the
trade-offs made in 1its development along with the reasoans
for those trade-offs, The second main section is essen-
tially a validation of the estimator developed 1in the
first section. Both graphical and tabular comparisons of
results are given. The third section presents some appli- ;"
cations fincluding parameterization through distance esti- .

mation, a new small sample analysis technique, and a new

two~sample test. Other possible applications are dis-
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cussed. The last main section was inspired by a goal
which was set during the definition phase of this research ;:Q
program. That goal was to develop a density estimator
-which could be used by the relatively uninitiated without

the requirement to choose any parameters. This section

presents some general, easy to understand and apply guide-
lines for when to use this, or for that matter any, non-
parametric estimator. Supporting data for a cholice -

between this estimator and some others is presented.

The final chapter summarizes the results of this
research effort. There {s always another step to be taken .
in research and Chapter VI discusses several possible ﬁfﬁ
directions in which to take that step. Hopefully 1t will ;ig;
be of use to those continuing down the path to better non- ;i;
parametric density estimators and new applications of 7

those estimiators.
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II. The Estimator.

Non-parametric density function estimators suffer, to
one extent or another, from some or all of the following
problems:

1) They require user specified "parameters” which can
greatly affect the shape of the estimated function, but
cannot be, or are not easily, optimally determined. This
problem is exacerbated when the estimator is overly sensi-
tive to these "parameters”. For example, the maximum
penalized likelihood estimator (39,178,203) requires two
such parameters. Although it is theoretically possible to
find the optimal values, realistically the values are
determined by trial and error. This makes density estima-
tion an art, with the result that, when this particular
estimator is used by the unskilled, all estimates tend to
look like normal density functions. Since this estimator
and a kernel estimator with similar problems are the only
ones commonly available (they appear in the International
Mathematical and Statistical Libraries (IMSL) package of
FORTRAN subroutines available through IMSL, 7500 Bellaire
Blvd., Houston, TX, 77036), many potential users may have
rejected non-parametric density estimation as too diffi-
cult or not accurate enough.

2) They tend to be noisy, like the frequency polygon

estimator (203). This can be corrected by averaging or

---------------------

[ S
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other smoothing processes such as Sweeder used. ' Many of ;f:
the Bootstrap techniques (47) are suitable for this job. |
Frequency domain smoothing via Fourier transform analysis
-may also be used.

3) They are not uniquely defined, particularly for

small samples. That is, one may obtain an entirely dif-
ferent estimate by slightly varying a parameter of the
P estimator. The histogram estimator typifies this problen. ;:i;
4) They only give reasonable estimates for relatively

large samples. This is a problem in virtually all non-

parametric estimators (Sweeder”s being a notable excep- ;ﬁ;
tion.) Unfortunately, in many cases, large samples are
difficult or expensive to obtain.

5) They require restrictive assumptions about the
form of the underlying distribution (i.e. symmetry, uni-~
modality, infinite or finite support, etc.)

6) They do not balance sensitivity and robustness.

That is, they tend to either give the same density shape
for samples from a wide variety of distributions, or they lf:
are overly sensitive to sample peculiarities such as out-
liers or closely grouped data points., The very nature of
a random sample makes these deficiencies difffcult to
handle. For example, If one makes adjustments to the s
estimator to take into account close spacing of sample fﬂi:
points, then true peaks in the density will be rounded and E&_?

true valleys will be filled.
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7) They result in an infeasible estimaté. Many
common density estimators yield negative densities, others
estimate support which does not include the entire sample.

The above problems cannot all be solved simulta-
neously. The interactions among these areas {s what makes
density estimation so difficult.

All non-parametric density estimators have the add-
itional problem of estimating the support for the density.

This 1is usually handled in one of the following manners:

1) Estimate f(x | x(;) < x < x¢y))

2) Estimate the support based on some sample extrapo-
lation rule.

3) Assume some support based on knowledge of the data
source, for example (0,®), (0,1), (~® ,®), etc. This {is
a sort of Bayesian non-parametric estimation.

4) Estimate the support from the extreme order sta-
tistics from a set of samples. That 1s, estimate the
distribution of X(1) and X(n) and select some percentage
point of these distributions as the estimate of the
endpoint (64)., There is seldom enough data avatlable to
actually use this method.

Endpoint estimation techniques used in this estimator
will be discussed later in this chapter. For now we
assume that the density is non-zero only on the interval
[‘(0)'x(n+1)]’ that values of X(0) and X(a+1) have already

been defined or estimated, and that these values converge




~ - - - e T S mp— -
...... PaChA e T T T W W W o ww—s
- ‘-.‘v
LR
.'v’_"
AR
-t

to the true support of the distribution as the sample size

increases.
"II.1 Development of the Estimator

Counsider a random sample, X]11X93X3,.009Xy, of size n

from an unknown univariate, continuous probability distri-

bution functiom, F(x). Let X(1)9X(2)s°++1X(n) Trepresent e
the ordered random sample such that x(l)S;(z)S,uﬁx(n).

Now define G, = G(x(4y), 1=1,2,...,n0 be the plotting rule
1 (1)

that is associated with the 1tD order statistic. G; 1is a ;;;A
value of the sample distribution function at this point, %Qfﬁ
of the form Gy = (i+a)/(n+g), with -1 < a < 8 < 1 (we
will discuss selection of plotting rule parameters o and f é;i;
in more detail later in this chapter.) Let = T

AG = Gy - Gy_y = 1/(n+B)

We know that

(1)
f f(x)dx = F(x(i)) - F(x(i-l))

x
(1-1)
P if we approximate
: F(x(4)) - F(x(q-1)) = 4G
? and assume that f(x) varies linearly between X(1-1) and
' <4
! i
Rt 1
e

. : B BRS
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X(q) ve obtain:
£y = 246/ (x(qy = x(q-1)) - £q-g
-where

For a plotting rule using S = 0 this {s similar to the

classical frequency polygon estimator.

ﬂ This estimator has some nasty properties, The value
at some points may be negative since Ei-l is not guaran-
F teed to be less than (2AG)/(x(1)-x(i_1)). In addition,
! since f(x(o)) or f(x(n+1)) may be arbitrarily defined

there are an infinite number of possible estimators. Even

i1f we define the density as zero at the endpoints the
estimation process can be started at either end and the
result will, in general, depend upon the end at which we
start. This means that the estimator is dependent upon
the path taken through the sample.

Both of these undesirable characteristics may be cor-
rected. Assume some Ei is the first estimate calculated
as a negative value. Let EI = 0,

and set

-

“~ %
g = 1486 - £, (xeyony = X1-2)) Y x¢qy = %(1-2))

-

The next calculated value, f:+l = 0, will always be

~ %
greater than zero, as will fi-l = 0 (See Figure 1). The
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result of this process is a piecewise linear, noun-negative

estimate of f(x) given by:

f(x) - fi_l + (x-x(i_l))(fi‘fi_l)/(x(i)-x(i-l))

X C x { x
and (1-1) = 7 = 7(1)

f(x) = 0 x ¢ [x(o),x(n+1)]

Which, when integrated, yields a continuous, pilecewise -Q;ﬂ
quadratic distribution function, F(x).
In order to remove the ambiguity in f(x) which exists

from the possibility of starting the process at either ;Q;

Y SR T A

end, we calculate the forward estimate, f(x), and the

-3
o

backward estimate, f(x), and average the two to obtain

f(x). This process not only removes the path ambiguity

but also tends to eliminate zero values of the density
estimate introduced 1in order to assure non-negativity of
f(x). PFigures 2(a) and 2(b) show the results of using

the estimator, as described so far, on random sauples of

size 100 from two distributions. Notice that this estima- 155&

tor 1s quite noisy, We will consider a solution to this

problem shortly.
The estimator does have some desirable properties when

we conslider the distribution function estimate.

1) ;(x) is differentiable everywhere,

2) F(x) is a distribution function.

3) 6 < F(x

1-1 {=1,2,...,0

(1
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These properties are essentially the same as those of
Sweeder”s estimator. However this estimator has the addi- ]
tional property that it does not necessarily go to zero at

"the sample points. It is this feature that will allow us

4
1
‘
4
1
to show convergence to the true density, and reduce the SR
amount of smoothing required to obtain a "good" density
estimate,

Analogous to Sweeder we may use a Bootstrap (47) type

technique to obtain some smoothing of our estimator. This
is desirable for cases where we have unnaturally closely
grouped data within the sample (i.e. data which does not
reflect the true character of the underlying distribu-
tion.) Experimentation with samples from known distribu-
tions indicates that this 1is a problem which occurs
frequently in small sample situations. We choose d sub-

samples from our original sample as follows:

{x(j); j=k+md, k=1,2,...,d; d< o ;

d<n/2; m=0,1,2,...,[(n-k)/d]}

Estimates are calculated using each of these subsamples

successively so that we have estimates,

£y i
j=1,2,...,d. The estimator for f(x) is obtained by ﬁﬁijq

averaging:

Q.

13 L
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11.2 Properties of the Estimator Eg;
A desirable property of an estimator is that it con- ﬁi:
verges to the true function as the sample size increases. ég;
The estimator obtained so far has this property as will be ggﬁ
shown in the following theorems, but first some fundamen- ;f«
tal definitions. t;?
Let R be the real line, B a Borel field on R and P a ;]3
probability measure defined on B. The function F defined itf
on (R,B,P) by F(x) = P({I:I=(-0 ,x] R}) i1s the distribu-~ E;g
tion function of P. f?é
-~ SEE
Fn(x), as we have defined it, 1s a distribution .
functioh, since: i;ﬁ
1) Fn(x) = J£)fn(x)dx is non-decreasing t;:
since En(x) is non-negative by construction. Ei;i

:5:

2) Fn(x) 1s continuous by construction

3) Fn(x) = 0 x < x(o)

Fn(x) = ] X > x by definition

(n+1)

Therefore Fn(x) is a probability distribution function.
The following development also assumes a random

sample, X oXgseeey X from a continuous distribution, F(x),

and that P (x) exists. Parenthetical subscripts are again

used to represent the ordered sample. ———
~———
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Lemma 1 - A finite convex combination of seqdences of
functions, each of which converges (uniformly) to a single

function, will converge (uniformly) to that function.

Proof - Let {fij(x));:i:g:é:::% be a set of sequences
with E
S
Ifij(x) -£(x)] <€ j >N 1=1,2,...,k ’
and let

k K » *
s(x) = E aifij(x) ; E @ =13 o 20 v £
1=1 1-1 o
then ,ﬁ"m;
L
|s(x) - Zaif(x)l = 'Z“'ifij(x) - Zaif(X)l = '
| 2oy (g () = €G] < Do lf, () - £(0)] < =
z:cyie = ¢ ';:ﬁg
R

The extension to uniform convergence is analogous 1f we ;:
start with the hypothesis: :;ij
Ifij(x) - f(x)| < € ; ] >N; ¥V xeR tiﬁiﬂ
. -~ -‘1
'

Lemma 2 - Given a partition, Pn = {XISXZS”‘an} of iﬁ

(a,b) such that g(x;Pn) —> g(x), any evenly divided sub- ff
partition, ' R
15 .;‘
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i

- P = {x(j); j=k+md, k=1,2,...,d; d<wo ;

d<n/2; m=0,1,2,...,[(n-k)/d]) oo

results in g(x;Pm) unif

> gx). o

Proof -~

lg(xsP ) - g(x;P )| < €/2 5V x € (a,0) 5 prg > N (1) A
Since P_ and Pq are partitions and we have uniform conver- ;~
t gence, this 1is the Cauchy coandition. Also
lg(x) =~ g(X;Pp)I <€/2 3 x e (a,b) ;5 p >N, 1

by definftion. |

;rF.

Bt

Now let N = d max(Nl,Nz) then from (1) we have e

|8(X;Pp) - g(x;f’N)I < €/2 Lo

and

lg(xsBy) - 80| < lalxse) - glxspp)| +

jg(x) - 8(X;Pp)| e

80
]

[ R

|8(x;§m) - g(x)| <e x € (a,b) m>N

That is:

unif

DADAAOEEER ML S
-
’

g(x;P,) > g(x)

16
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'
The above Lemmas allow us to prove convergence of the ' f;
basic estimator and then extend it easily to the sub- )

sampled case without directly considering each estimator

based on a subsample.

Theorem 1 - The sequences Fj(x) converge almost

everywhere to F(x) where:

0 * L %50) '.
i-l+a < .
T AT T TS DAL TE T O R -
- - -~ 2 R
Fy(x) = (g™ Ey(a-1)) %y gy
g1y ™*5(1-1))

X3(1-1) £ * L Xy(y)

and

2 P .
@ (R 1oy | 3D R

’
L
._"

" x < x < x L
fj(x) - J(i-1) = © = 73(1) 'Y

0 otherwise

17
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(since j represents the index of a sequence based upon a
particular subsample, and we intend to show the proof for i;;
one subsample and later extend it using Lemmas 1 and 2, vwe

-will temporarily drop the j subscript for simplicity.)

3
-y,
ot
.

s Lt

Proof - Consider the points x(i); 1 =1,2,...,n+1

DI  ins gt i amdin SR S il S
:
.
. 1]
N4
4
I. !

N I

0 i=0 .
F(X(i)) = G1 {=1,2,...,n
1 i=n+l]
)
This 1is essentially the empirical distribution function,
E(x), which has been shown to converge almost everywhere
to F(x). e
| A
That 1is o
lim E_ (x ) = 1lim g(x ) = 1lim G, = F(x ) o
n—->w (1) n~> (1) a—>e & (1) . ni
i
For any x in the interval [x(i-l)’x(i)) we know: ;;fi
-~ - -~ .
] F(x(i-l)) < F(x) £ F(x(i)) ——
0 L
t from the monotone property of F(x). e
E So: Lj,_
: VI
11s ¥ ¥ P S e
: L (x(i-l)) < 1im. F(x) < lim F(x(i)) RS
r v
. 18 e
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°
(where we denote 1lim as 1lim) or: -_3;
a—>w e
lim Gi—l £ lim F(x) £ 1lim G1 ,}.
. F(x(i-l)) < lim F(x) £ F(x(i))
and since o
F(xy_y) £ F(x) < F(x(4y)
|F(x) - 1im F(x)| < F(x(i)) - F(x(i-l)) = .7
{1+ 1-1+q 1 -
1im m lim -EI—B— lim F—B' 0
’
or e
lim Fj(x) = F(x) almost everywhere (a.e.)
n—> 00
and by Lemma 1 we have:
- 1 d .
F(x) = a-jz% Fj(x) —> F(x) a.e. g

We have shown convergence of the distribution

function. We now proceed to show the more powerful

result, convergence of the density function estimate to

the true densi{ty function. e
»

Theorem 2 -~ The density function estimate, f(x), con-

verges almost everywhere to the true density function,

F°(x) = f(x), provided f(x) exists and is continuous.

19
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Proof - For some point x fn the interval [x(1~1)’x(1))

F(x) - F(x-1/n) G, = G, L

F'(x) = lim i7a - = e = Rt

(1) 7*(1-1) g

el

R

lim = fic ’ |

(1) “(1-1) %

; 5
f . - o
. f s f1-1 7 R
i (1) “(i-1) 3
A AG + AG _ AG - ) J
- X(1)"%(1-1) (1)7¥(1-1)  X(1-1) *(1-2) ]
AG AG L

- -~ + ... 0+ —

("(1-1)"‘(1-2) "(1-2)’"(1-3)> - L4

AG  _ ___AG
X(2) ™*(1) *(1)7*(0)

Now consider the 1imit of the estimate. Assume:

| lim ( s - as 0 .
g (1) *(1-1)  *(1-1)"*(1-2) o
g <

Since the 1imits of both terms exist, this implies:

118 —-29 # lim - s
(1) “(1-1) (1-1) 7(1-2)




or

Fllxcgaqy) # FLUxy_py)

"Which cannot be true since F°(x) exists everywhere by

hypothesis. Thus

AG

lim E (x) = 1im = F7(x) a.e.
] *(1) 7 (1-1)
and by Lemma 1
1 d .
lim 3 2: ( = f(x) = F7(x) a.e.

The case of a repeated sample value has been lumped
into the "almost everywhere” of the above proof. However,
repeated sample points are easily handled by simply re-
placing G with qG (where q is the multiplicity of the
sample point) in the formula for Ej(x). This has no
effect on the proofs of the above theorems since it occurs
with probability zero for finite samples from continuous
distributions. In real samples we frequently encounter
repeated values due to measurement inaccuracies. The
above proofs still hold as long as the maximum multipli-
city 1s less than or equal the number of subsamples. For
greater multiplicity {t is probably possible to show a
similar result.

We now extend Theorem 2 to cover the case of certain

21
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types of discontinuities in the deasity function. j,’"}

: S

. Theorem 3 - The density function estimate, f(x), con- ?'gj

verges almost everywhere to the true density, F(x) =

f(x), provided F(x) {is continuous, f(x) exists, and we

define f(x) = (f(x_)+f(x,))/2.
Proof - As in Theorem 2 assume we are interested in Jf'«
3 S
i the value of f(x) where x € [x(i-l)’x(i))' ' |
; Case 1 - f(x) has one discontinuity at X where
. E
A X(1-1)$%S% (1) —
; b
P AG . AG ) AG ) ) e
] OoX o ™a-n 0 \Mo ™ a-n 0 *a-n T -2) B
A R
f .
:' ERTIEA Cyee= - ;-“‘}?r“) L
: (2) “(1) (1) 7(0) SO
i All the terms in parentheses above will go to zero as in t;;“
e - .4
Theorem 2 except those containing (x(i)-x(i-l))' leaving: ;;f
’ . ]
lin £, = 1in ——--23€ -lin - a¢ - .
(1) "(1-1) (1-1) “(1-2) BERR
. T
] 11a —246 - Filxy) v
(1) “(1-1) - ,i
1
-
. But if the derivative at the discontinulty 1is defined as T
’ '
. the average of the left and right derivatives, then: RS
22 ‘
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®
- F7(x,) + F7(x)) f]
=70 + 0 - - B- N
1im f1 2 3 F_(xo) F+(xo) o
-t
L4 i
and since no x(i)-x(i-l) terms appear in the fi-l i 7i
equation, we have: f B
5 .1
°

Hm £, _, = f(x_)

That 1s, the value of the density estimate to the left of
the discontinuity converges to the true density value to

the left of the discontinuity.

Case 2 - Consider the case where the discontinuity occurs
in some other interval. If it occurs after x(i) there is

no effect and we have the same result as in Theorem 2 for

fi' If the discontinuity occurs before x(i), say between

the previous two points, we have:

pre

linm ;1(x) = 1im —--_JQE___- +

X(1)7*(1-1)

lim (x A¢ - < a¢ -
(1) “(1-1) (1-1) “(1-2)

lim < {G - ec
X(1-1)"%(1~2) X(1-2)"%(1-3)

where all other terms go to zero as in Theorem 2.
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This reduces to:

lim fi(x) = F7(x) + F;(XO) -2 1lim = AEX + F:(xo) = o]

(1-1) “(1-2) T

]

I FZ(x,) + Fi(x,) .
F (x) + F+(x0) -2 3 + FZ(x,) = F (x) :

]

X This proof extends directly to any finite number of B

discontinuities in the probability density function as
long as the value at the discontinuity can be defined as
the average of the values on either side, Jump dis- : 1
continuities fall into this category. The only other

restrictions on the estimator are:

R 7 I
t

1) The endpoint estimator must converge to the true

endpoint.

i 2) There must be a finite number of subsamples.

Both of these restrictions are easily met.

Now that we have established the form of the estima-

tor, we must define the following:

1) The number of subsamples
2) The choice of endpoints . y

3) The choice of plotting positions

Since one goal of this research is to develop a "hands- Qqﬁ

off* estimator, these choices will either be made a priori

24 o
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or the estimator will make the choices based on some

sample statistic.

"I1.3 Smoothing

Aside from the well known problems of numerical dif- .
ferentiation, there are two primary contributors to rough- © )
ness of the density estimate as described to this point.
The first is the existence of artifically large spikes due o
to unnaturally close spacing of several points in the

random sample. The second is the tendency of the estima-

tor 1itself to over (under) estimate the value of the
probability density function at a point when the estimate
at the previous data point was too low (high). The first
problem results in a density estimate with "random”™ peaks
and valleys, while the second tends to create oscillations
in the estimate at a frequency equal to the number of

sample points divided by twice the support interval. The

two problems have been attacked in this dissertation some-
what independently, despite the fact that a solution to :?id
one will affect the other. -

After 1investigating several techniques to smooth the —
oscillitory behavior of the estimator, including digital
filctering, frequency domain modifications, and iaversion
of the distribution function, a straight-forward averaging
technigue was used. Given the data points and an estimate i;i;

of the probability density fuanction at these points,

25
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. T
{(x,£,); 1=0,1,...,n+1} - e ol

we form a new data set and corresponding set of deansity

estimates as follows:

{(yi,f(yi)); Vo=%Xp} y1=(x1_1+x1)/2; i=1,2,...,n+l;

y £y ) =CECx _D+E(x ) /25 1=1,2,. .. ,041;

n+2- *a+1’

f(y0)=fo; f(yn+2)-fn+1}

We then perform a similar procedure to get back to the
original data points:

-

[(xy,£q); Eg=C(E3+8,)/25 1=0,1,...,0; fo=fq; £o,.1=fn4)
or after simplification:

£, = (Fy +28,48,0/4 1=1,2,...,n
By Lemma 1 this operation will not affect the convergence
properties of the estimator since this 1is merely a convex
combination of estimates which all converge to the true
density.
The second type of smoothing 1s designed to desensi-

tize the estimator to anomalous behavior in the data. The

Quenouille-Tukey jackknife (154) and other Bootstrap
methods (47,48,59) are well suited to this purpose. The

fundamental technique in all of these methods is to gener- ’ R
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ate estimates with portions of the data and combine them

in a manner which tends to alleviate the problems assoc-

iated with the estimator operating upon the entire sample.

Efron (47), Rustagi (164), and Sweeder (202) have all used
this approach in density estimation. The problem with
these methods {s that {if one applies the method to a
function estimate rather than a point estimate the inter-
actions between the "subestimates” can slow the conver-
gence of the estimator substantially.

Ideally, every random sample would be of the form:
F-l(c,) 1=1,2
Xiﬂ 1 ®Elydyeoaeylt

where Gy is some plotting rule. Realistically, we are
fortunate 1if the whole sample, let alone individual data
points, accurately portrays the characteristics of the
underlying density. Subsampling is a tried and proven
technique to reduce the overall noisiness of the density
estimate., The philosophical idea behind subsampling 1is to
place unnaturally closely spaced data points into dif-
ferent subsamples before the estimate is actually
developed. We have already discussed the theory; the
question that remains 1s how many subsamples to use.

A Monte Carlo analysis was performed to determine the
"optimal” subsample size, Tweanty~five runs were made from
each feasible combination of eight subsample sizes, (5,10,

15,20,23,25,30,45), three distributions, (uniform, normal,

27
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and double exponential), and six sample sizes (5,10,20,40,
100,200). The mean integrated square error (MISE) and
modified Cramer~von Mises (MCVM) integral error (187) were
calculated and results are shown in Figure 3. As a result

of this analysis the optimal points per subsample were

determined to be:

Uniform type distributions........2 -

Normal type distributions.........4

Laplace type distributions.......1l0

Actually fractionally more points per sample were used
based on subsequent studies which showed that, for sample

size 100, the "optimal” number of subsamples for a uni-

form is 46, for a normal is 23 and for a double exponen- -~
tial is 10. The ten subsamples for a double exponential

is not really optimal in a MISE sense, but fewer sub-

samples were found to yield an unsatisfactorily noisy -
estimate while ten subsamples provided an acceptable esti-
mate with little sacrifice in calculated error. For
sample size 100 we selected 10 subsamples as the minimum
number to avoid any potential noise problems.

Since the "optimal"” subsample size is not a constant,
we need to be able to discriminate between the classes of
distributions represented by the uniform, normal and
Laplace. A modification to Hogg's Q (79) statistic was %Ef

chosen for this purpose. -
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Hogg”s Q is given by:

Q = (Uy = L)/ (U = Lp) S

).
Where: Uy = gverage of largest na order statistics -
Ly = average of smallest na order statistics ,;ﬂj

Ug, LB are similar to U,, L, )

The statistic defined above assumes symmetric distribu~

# tions, thus {t is not acceptable for a broad class of non-~ S
! parametric estimators, including this one, We are par-~ .

‘ ticularly concerned with densities which are assymmetric

; or multimodal. For these purposes we define three pseudo-~ ;:

samples:

{x%i); x%i)sx(i), X(1)8Xys x%i)'zxm'xn+l-1)’ x(i)me}

{xfi)‘ x%i)’x(i)' X(1)2%p} x%i)'zxm'xn+1-i)’ x(1)<xp}

MERRAERE) ~ EAELIShanene
Ni

{*?1);X?1>'ZXzs-X<n+1-1>, X(1)SXps

’

i x?i)’2x75'xn+1-i)' x(i)lxm}

Where:

x. = sample median

X995 = (xm+x(0))/2

x75 = (xm+x(n+1))/2

These pseudosamples are:

1) the first half of the original sample reflected t

about the median.

2) the second half of the original sample reflected

about the median.

LT e
o B e .
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3) the first half of the sample reflected about an
estimate of the 252 point and the second half reflected e
about an estimate of the 75% point.

- The Q statistic was calculated for the original and

each of the pseudo-samples (QO, Q;, Q> Q3). Based upon RS

the subsample size study and the relative errors we estab- °
lished the following guidelines:

1) When in doubt choose too many points per sub- ;» -
sample, An error in this case will result {n the density L
maintaining its characteristic shape but showing noise Lo
characteristics. ;hQL

2) Be absolutely certain that the density is of the
uniform type before choosing the uniform, since choosing
the small subsample size tends tu flatten spiked den-
sities.

In order to achieve these objectives, subsample size
of about 2 was chosen only when QO’ Qs Qz, and Q3 were
smaller than the chosen breakpoint value between unifornm
type distributions and normal type distridbutioans. All
four values of Q were used in order to assure that the

probability of a8 spike in any portion of the distribution

was remote., Normal type distributions were assumed when-

ever Qy, Q,, and Q, were in the range between the uniform-

normal and normal-double-exponential breakpoints. 1In all '¢_&f

other cases, the distribution was assumed to be "spikey"” f;

and the subsample size, ng, was chosen as follows: ;" T
31 '_.-".:-.
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max(Qq,Q;,Q,5,Q3) - QF
ag = min (ng = ny) + 0, , ny

* *
Qg - Q,
where:

Q, = theoretical Q for normal distribution

o
[~ 9
[]

normal optimal subsample size

=
L]

n4 double exponential optimal subsample size

After calculating the subsample size, the calculated
value was bounded on the high side by n/2 points per sub-
sample, and on the low side by 2 points per subsample.
This was based on empirical evidence that it was never
advantageous to have less than two subsamples and on the
inability of this estimator to calculate a density
function for a sample of size one.

The values used for the breakpoints were chosen (based

upon a = .04 and B = .5) as:

Qua = min(1.45 + .0075n0, 2.31)

Quq = min(l1.9 + .01lm, 3.12)

which are approximate linear fits to the optimal numbers
determined by Rugg (163) limited by the average population
values for the distributions. These breakpoints are not
critical due to the method of using pseudo-samples and

based upon the relatively small variations 1in subsampie

32
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size., The values of population Qs used were:

Q3 = 3.53 ’
Qr = 2.70 o
Ql = 1.92 %ﬁ%f
;,~_
This method resulted in the identifications shown 1in
Table 1. These percentages are based on a Monte Carlo
analysis of 1000 cases with sample size 100. i-
Table 1 - Correct Identification Percentages (n=100)
b
Actual Distribution ;f;l;
Uniform Normal Laplace il;%ﬁ
Uniform 95 1 0 ;fff:
Identified | Normal 5 73 0 '\ia
as: Intermediate 0 26 32 i;Tfi
Laplace 0 0 68 i?j?:
é“

As the sample size decreases there is a tendency for
the sample to look more like a sample from a uniform
distribution. This is reflected in Table 2 which 1is ;7"
similar to Table 1 but for sample size 10. In this case
there {s no intermediate subsample size due to the small

number of subsamples in all cases.
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Table 2 - Correct Identification Percentages (n-lO)

)
Actual Distribution .
- Uniform Normal Laplace f
Uniform 76 34 24 -
Identified '
Normal 21 51 42
as:
Laplace 3 15 34

M o DA
b |

The amount of smoothing may be adjusted by the user {f

prior knowledge of the underlying density is available.

..F-—

However, one may easily be led into the trap of over-

smoothing in order to obtain a "pretty” density while

simultaneously forfeiting some accuracy.

I11.4 Support Estimation

For practical purposes probability distributions can

be considered to have finite support, despite the fact j:;ﬁ
that they are often approximated, for mathematical con- ?;Eﬁ
venience, by distributions with infinite support. When o
estimating a density function, the estimate can be quite -
sensitive to variation in the estimated endpoints. This
is particularly true for platykurtic distributions.

Consider, for example, the uniform distribution shown in ff;=

Figure 4.

34

o 1..-}'

- -
J.A-'.-'o\




DENSITY FUNCTIOR

L)
X 1.00 ) 9.0 .n 5.0 5.0 LN

Figure 4 - Sensitivity to Support Estimation

The endpoint estimate 1is less critical for leptokurtic
distributions (where both tatils are long) since the bulk
of the density function 1is away from the endpoint and
unlikely to be greatly affected by small variations,.

Endpoint selection is avoided in most non-parametric

density estimation techniques by estimating

f(xlx(l)ixix(n)). Alternatives include various extrapo- 3;5
lation rules and methods of estimating percentage polats .
of order statistics., Hall (64) estimates the distribution fﬁ;

of the first and last order statistic. Unfortunately,
this approach {s only possible with large samples, since a

sample of first order statistics must be generated in

order to start the estimation procedure. Bootstrap

techniques (76) have been proposed for the endpoint esti-
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mation task, but they frequently estimate support inside
the sample bounds or well outside the actual support for »
samples from distributions with finite support (28,29).

The shape of the density in the vicinity of the first

or last sample points is related to the distance from the
extreme order statistic to the endpoint, While shape ILSQ
estimators of various sorts exist (kurtosis, Hogg’s Q, B
percentile ratios) most are based on the entire sample » o
thus somehow averaging the two tail shapes. The implicit .

assumption {s that the distribution is symmetric. In

addition, some of these statistics are quite sensitive to
sample variations, S

A thorough investigation was performed on a series of S
methods which adjust the linear extrapolation of the
sample distribution function (based upon some plotting
rule) to account for the estimated shape of the distri-
bution tail. Although several of the methods developed
showed a capability to predict an endpoint more accurately
than a linear extrapolation, they were occasionally (less
than five percent of the cases tested) drastically 1in
error and did not, in general, perform well for small
samples. The reason for lack of robustness and poor small
sample performance was the paucity of information in the
few sample points in the tails., The methods attempted
will be described briefly as. they may have some applica-

tion in cases where sample sizes greater than one hundred

\
}.
]
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, are available. For this estimator the new endpoint ,Q
-
[
}

estimation techniques did aot seem to significantly

improve the overall performance , so a modified linear

extrapolation method was used to fix the endpoints. (Only
the left endpoint, X(0)* estimate will be discussed. The
right endpoint, X(n+1)? {s handled symmetrically.)

The methods investigated were: .3

1)
X(0) = 2X(1) " *(2)
Chooses as an endpoint a point the same distance to the

left of the first order statistic as the secoand order

statistic 1s to the right. This method has the advantage

1 % R

- of simplicity but is extremely sensitive to sample vari-
:E ations. In addition, it tends to give poor results for
R distributions with light, loag tails and for those with
|
- tails heavier than the uniform, for example a U-shaped
Beta. T
2) .
,- 3 .
.. X(0) = X(m) ~ (X(n)~%X(1))6n/(Cp=C1) T
Choose as the endpoint a linear extrapolation of the if
! ) points (x(m),Gm) and (x(l),Gl), 1 <m <n/2., This method L‘ j
. reduces the sensitivity of the estimate to sample
variations but suffers from problems similar to those of
) method 1. L
: 37 T
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3)
m n/2
X(o) = kl E (R—X(i)) + kz (i-x(i))
i=1] i=1

% = sample median
Chooses as the endpoint a point based on two averages
relative to the sample medlan. This method modifies
method 1 to make it more robust but still suffers from the
problem of a linear estimator trying to fi1it a non-1linear
function, Method 3 also requires a relatively large sample

to give reasonable results.

4)
x(0) = (1+kR)x()) - KRR 0<k<1
m n/2
R = (a/2m) D (R=x¢q))/ ) (R=x(q))
1=1 =1

Chooses as the estimate a linear extrapolation weighted by
the function R which is a measure of the shape of the
distribution similar to Hogg”s Q statistic. This method
is more versatile since 1t adjusts the slope of the extra-
polation method based upon the sample. Unfortunately, the
R statistic was found to be sensitive to sample variatlions

and is not a single valued function of actual endpoint

location.

5) ;(0) = quadratic least square fit to the points

- e
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(x(l)’Gl)v (x(z)’Gz)y (X(3),G3)
using the equation:
G(x) = a(x - ;(0))2 + b(x - ;(0))

This method is a quadratic fit to the data subject to the
constraint that the resulting equation reaches a minimunm
at the point (;(O),O). The method is quite good for
distributions with long tails but was poor for unifornms,
exponentials, U-shaped betas, etc.

6) . .
x(0) = {x(oy1 = Kx(p)=x(1)))P~

3
|
=

BT = expl (O (1ei) ™2 (141) ) (X (14-1) 7%(1) )]} k<o

Pute
[]
—

This method calculates a more robust percentile ratio, P7,
and adjusts a linear extrapolation based on the value of
P°. While this method appears to have merit, in practice
the value of P° was found to be non-unique for widely
varying distributional shapes, and quite sensitive to
sample variations due to the division and exponentiation
operators.

7) Let
h[(;(O)Z‘;(O))/(x(m)-x(l))] = P’
then

;(o) = ;(o)z - (x(g)=x(1))n71(e")
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Where ;(0)2 = ;(0) as determined by method 2. This method

determines the function h empirically for a series of beta

.distributions with various parameters and uses the inverse

function to estimate the endpoint. The non-uniqueness of
P and 1its sensitivity to sample variations led to poor
estimates of X(0)*

8) This method was the same as method 7 except P” was
replaced by:

m m

S = (a/ 10(0)) D Cxeaeny=x(1)) /1 D (x(pery=x(1))212
i=1 i=]

The method is inspired by the sample kurtosis with an
empirically defined scaling factor, m/ 1ln(n), included to
reduce sensitivity to sample size and the fractional por-
tion of the sample, m/n, used in the calculation of S.
Method 1 was used in this estimator (modified as

described below) for the following reasons:

1) The ability to generate a density estimate for
small samples was desired. All other endpoint estimation
schemes require larger samples than method 1 to gilve

reasonable results.
2) The method is simple with no subtle pitfalls

and gives reasonable results which do not contradict known

facts.
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Philosophically, one feels that the entire sample,

!
j

rather than a subsample, must be "better” for approxi-

i mating endpoints. The problem with picking endpoints and
"then using the same selected values in the calculations of

each of the subsample densities is that too much prob-

‘.?-l"-' e
2T LT
.

\

’

haln’ alaialia . an

e

ability tends to be lumped in the tails. On the other
hand, allowing each subsample to determine its own end-
.: points tends to spread the estimate over a wider support

which adversely affects estimator performance for

MPSE T V. "

densities which do not tend to zero as the endpoint {is

éi approached. A compromise solution was developed experi- = 9
- 9
P' mentally which seems to eliminate both these problems,
Define: ]
-~ -~
X(0) » X(n+1) = estimates of endpoints based upon g f
the entire sample PR
- -_“d
;(0)1 ’ ;(n+1)1 = estimates of endpoints based upon 1;;
the 1th subsample >
;:0)1 , ;:n+1)1 = endpoint estimate used in calcu- ;[ij
lating density from the 1th subsample
- - 4
Then _]

-~ - -
X(0)1 ™ max(x(o)i,x(o))

;?n+1)1 = “in(x(n+1)1’;(n+1))

As can be seen in Chapter 1V.2, this endpoint estima-

tion technique, when applied to small samples, results in

41

® e e e
B BT et T e, et et el at ot h S r e e e e e e e s e = m
e e, . B s S R TS . - = e TP T e Tt et
. . .., T T N A T e et e, * .
- - .
...........




an excellent approximation to the 1/n and (n-1)/n
percentage points of the true distribution by the esti-

mated distribution. Thus the errors in the endpoint esti-

mates due to this method are insignificant for most appli-
cations other than approximating points far out in the

tails of the distribution.
I1.5 Plotting Position Selection -

Plotting positions are defined as a set of cumulative
probabllities associated with a set of ordered observa-
tions. Thelr purpose stems from the use of probability
paper (as far back as 1396) to try to predict distribu-

tions of observed random variables. They were commonly

used by hydrologists to analyze flood data (74). Generally -
an attempt is made to approximate some point in a distri- :E;
bution by choice of plotting position, for instance fi
E[F(xy)]. ;

As Harter (69) points out in his excellent summary of
the history and use of plotting positions, much of the
problem regarding the choice of plotting positions is due - -

to the fact that
FIE(xy)] # E[F(xy)] = 1/(n+1)

except for a uniform distribution. The median ranks

cholce of plotting position is attractive for the case of

. a single point, since for monotonic functions the median
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of the function {s the function of the median. Unfortu-

nately this is not true for functions of more than one )
random variable.

- Table 3 shows some of the historically more popular e
choices of plotting positions. A small amount of empir-
ical investigation of many of these plotting positions was

done but there was no obviously better choice for the

determination of the density estimate.

Harter (69) gilves ,

MAGE + SRS  EART LRSS . et
.
-
y )

Table 3 - Plotting positions of the gth Order Statistic

T
F(x) Descriptioa
1. i/n value of the empirical
distribution function (EDF)

2. 1/(n+l) mean rank

3. (1-1)/(n+l) mode rank
: 4., (1-.3)/(n+.4) median rank (approximation)
i 5. (1-.5)/n midpoint of the jump of the EDF y
g 6. (n(2i-1)-1)/(n-1) | average of mean and mode ranks L
. 1
{ 7. (1-.375)/(n+.25) | efficient approximation for the I
g normal distribution B
i 8. (i-a)/(n-a=b+1) Blom“s plotting position (15) ]
3 a,b<l L
- 9. (1i+4a)/(n+b) a more general plotting position $~fj
; -1<a<b<1 RO
’ T
_! L
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a detalled analysis of choices of plotting rules and that
will not be repeated here. For the purposes of this work,

the approximate median ranks:

Gy = (1-.3)/(n+.4)

plotting positions were used, This is the same approach
. taken by Sweeder,

While the plotting rule does not in fitself greatly
3 affect the estimate, in conjunction with subsampling it

does. The reason for this is that equal areas are forced

into unequal intervals at the ends of the subsample. ’

Figures 6 and 7 1llustrate this problem. 1In Figure 5 we ;;}
have a sample shown along with the density generated with ZE;
no subsampling. If we subsample twice we obtain Figures 6 ii:
and 7 which are averaged to get the smoothed estimate, iig
Figure 8. Note that the subsamples and the resulting E;i
estimate tend to have peaks near the endpoints. This is f;;

due to forcing the estimate to generate too much area at

the ends. For example, in subsample one, approximately

one~fifth the area is generated between X(0) and X(1)» .
while this interval 1s only one of the nine defined by the
endpoints and sample points. Sweeders estimates fre-
quently showed a characteristic hump near the endpoints,
which was due to this phenomenon.

A solution to this problem is to reapportion the area

generated between the points of the subsample, A new set
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of plotting points are chosen such that the values of G,
& and G,g, the first and last subsample plotting positions,
are equal to the plotting positions for the corresponding

-point in the entire sample. The plotting positions for

the rest of the subsample points are determined by simply
dividing Gls-Gns by the number of intervals remaining.

This has the result of making the estimated subsample

probability density function values more closely represent
the entire sample density function in the tails, while
takfing advantage of the smoothlng properties of sub-
% sampling throughout the rest of the support. Since this
- approach 1s equivalent to selecting a different set of

(assymetric) plotting positions, the coanvergence proper-

ties of the estimator remain unchanged.

11.6 Example Problem

The following example illustrates the use of the new
density estimator. Data used represents the lifetimes of
eight grinding wheels and are extracted from Table 11.10

of Kapur and Lamberson (88).
X = (22,25,30,33,35,52,63,104)

First we will calculate an estimate with no subsampling or
smoothing to ifllustrate the technique. Following this we

will calculate the smoothed estimate as described in the

earlier portions of this Chapter.
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{ ‘ The plotting positions are:

!
,
:
2
bA
2
.
b
b
b

G = _%;L%. = (.0833,.2024,.3214,.4405,

.5595,.6786,.7976,.9167)

Endpoints are calculated as:

The forward pass:

-

fo = 0
fldxl/z = n0833 =) fl = .0238 V
£, = .0238 -iﬁfﬁ
£, = .0238 1
£, = .0555
fs = A0635
fg < O
So we set fg = 0 £
F And recalculate fg = (.476 - f4(x4-x3))/(x5-x3) = ,0163 ?5 ;
E Continuing f; = .0216 ;f} ;
: 1
; g < '
: 8 ° T
. So we set fg = O o
: And recalculate £, = .0092 e
I L
; fg = .0041 L —

We now calculate the backward pass:

£gAxg/2 = .0833 => fg = .0041
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: £, = .0017 I
fg = .0199 ‘_:*
7 f5 <0 => f5 =0 ,
Recalculate f, = .0163 T
i ° -
. f,‘ = 119 »
V" Recalculate £, = .0952 ] ‘J
el
f, = .0476 ]
T4
£, = .0317 L
fq = .0238 ]
X 0 -t ol
o
Z:j‘ Averaging the forward and backward passes ylelds: ‘j'_:
. £=(.0119,.0436,.0357,.0119,.0754,.0082, ;
i .0082,.0055,.0021,.0021)
I
- The result of this estimation is shown in Figure 9. Note
:::," the amount of noise {n even this simple estimate. .
i :
i We now calculate the "optimal” number of subsamples as
:‘_;'_ two and obtain the smoothed estimate. ]
.- Y, = (22,30,35,63) 3
Y, = (25,33,52,104) "
Y1, * max(19,14) = 19 Yig = min(91,145) = 91 ‘
Y ]
- = 19,17) = 19 = min(145,156) = 145
: Y2, max(19,17) Y24 (145,156) _
- The first subsample 13 augmented with the endpoints :
!4 .'\
- (19,22,30,35,63,91) - 1
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Figure 9 - Example Density Estimate Before Smoothing
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Plotting positions are calculated ' __'~._"j-;
Gy = .7/8.4 = .0833 G, = 3.7/4.4 = .8409 .
S
Forward pass 1s calculated as before: '
fl = 00555 - - 4
»
f, = .0076 o
f3 = .0934
f, <O => f, =0 i‘.uni
Recalculate f£5 = .0292 e
f = .0114 ST
: Backward pass 1s now calculated: '<
fS = 0
| £, = .0114
£5 = .0066 ]
fo = .0944 ":_'__
£, <0 = £, =20 » |
Recalculate fp = .0763 o]
fo = .0555 sl
.'.-. .'T..i
The first subsample estimate is given by the pairs: T
(19,.0278) (22,.0278) (30,.0420) o
(35,.0179) (63,.0057) (91,.0057) ]
b
s 3
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Performing similar calculations for the second subsample

we obtain the pairs:

(19,.0055) (25,.0476) (33,.0156)

(52,.0086) (104,.0021) (145,.0021)

We now smooth the estimates using

to obtain, for the first subsample: }
P ]
(19,.0278) (22,.0314) (30,.0324) ;“;.J
(35,.0209) (63,.0088) (91,.0057) .
and for the second subsample: ~f;?f
" ri.-<-,q
(19,.0055) (25,.0291) (33,.0219) L
(52,.0087) (104,.0037) (145,.0021) f&{jj
p--;--n-d- il
Note that at this point the density estimates no loanger ’.,“;
integrate to one since the smoothing operation is naot K
weighted by the sample intervals., This will be corrected } V]i

after averaging, but first we must interpolate within each

sample to find the values at corresponding x coordinates.

The first subsample provides:

(19,.0278) (22,.0314) (25,.0318) (30,.0324)

(33,.0255) (35,.0209) (52,.0136) (63,.0088)

(91,.0057) (104,0.0) (145,0.0) ;«1

>4 o
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Noc.e that there is additional area added implicitly

between the points with x coordinates of 91 and 104. This

provides additional smoothing for the transition between

subsample estimates.

The second subsample provides:

(19,.0055) (22,.0173) (25,.0291) (30,.0240)
(33,.0219) (35,.0205) (52,.0087) (63,.0076)
(91,.0049) (104,.0037) (145,.0021)

Averaging the two subsample estimates we obtain:

(19,.0167) (22,.0244) (25,.0305) (30,.0282)
(33,.0237) (35,.0207) (52,.0112) (63,.0082)
(91,.0053) (104,.0019) (145,.0011)

Integrating, we see that the total area under the
curve is 1.08815 so we divide each of the pdf estimates by

this value to obtain our final estimate:

(19,.0153) (22,.0224) (25,.0280) (30,.0259)
(33,.0218) (35,.0190) (52,.0103) (63,.0075)
(91,.0049) (104,.0017) (145,.0010)

Figure 10 shows this estimate., Also shown is the Weibull
fit, determined using Weibull probability paper, given by
Kapur and Lamberson. Since the two density estimates are
cliarly different, the natural question {is which 1{is

better. There is no answer to this question, however we
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Example Density Estimate
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can calculate the 1ikelihood of the sample for each of the
distributions (assuming independent sample points.) When
we do this the value for the Weibull estimate, Ly, and the

value for the new estimate, L, are:
L, = 9.5 x 10721
L = 8.4 x 10716

Clearly this particular sample is much more likely to be
from the new density estimate, It is also Interesting to
calculate the likelihood of this sample coming from a
uniform distribution, since, for very small samples, a
uniform distribution tends to maximize the likelihood.

The likelihood for a uniform distribution 1is:
Ly < 4.9 x 10716

One other question remains along these lines and that is
the question of what the subsampling and smoothing have
done to the likelihood of the sample. If we calculate the
likelihood of this sample for the unsmoothed estimate with

no subsampling we obtain:
L = 1.1 x 10713

The significance of these numbers is subjective. They are
presented more as a matter of interest than as a claim for

the quality of the new estimator,
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III. Quality of the Estimator.

Now that we have developed the new non-parametric
estimator, an evaluation of the quality of this estimator

is required. The approach taken in this chapter {s to

obtain Monte Carlo estimates of the accuracy of the new
estimatcr and compare these results with existing density

estimators. Wegman (226) provides a discussion of and

e g o o

results from several other non-parametric density » 4
T estimates. Tapia and Thompson (203) discuss properties of .
some other estimators and Sweeder (202) also provides some _ z
comparisons, In order to compare with these other !; *
results, twenty five Monte Carlo repetitions using samples if;i;

of size one hundred were used in this study. The results
presented here are consisteat with Monte Carlo studies
using one hundred repetitions.

The measure of merit most frequently used in these

comparisons is Mean Integrated Square Error (MISE) or fre-

quently MISE is approximated by the average squared error

(ASE). The following measures of merit were counsidered as

alternatives in this study: - 1
SNy

.9

1) Anderson-Darling Integral .

2) Modified Anderson-Darling Integral -a-.:

3) Average Square Error

a_2

4) Cramer-von Mises Integral

[
2

5) Modified Cramer-von Mises Integral i

‘
) s R .
ot - - 4‘.'... oo
P T R ' e .
s e st e T e .
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6) Kolmogorov-Smirnov Integral ’ i;>
7) Modified Rolmogorov-Smirnov Integral R
8) Integrated Square Error ?}§f

9) 1Integrated Absolute Error

10) Maximum Absolute Deviation

Although all of the above measures gave different num-

bers, relative comparisons indicated that only Maximum

Absolute Deviation varied significantly from the others.
This was true primarily at the points of discontinuity {n
the density function. Thus, for the purposes of this

study, Average Square Error (approximately equal to MISE) m

-r'r"*\f_
AR P
P

1]

i

a

is used when comparisons are made with other density

T
o e

estimators, and Integrated Absolute Error 1is used for two
sample tests since the numbers retain more of an intuitive - 1
feel, at least to the author, Based upon results of 1
investigations of those ten measures of merit, the “j
research results would not change substantially if any of -1.4
the first nine measures were used and possibly not even i
for the last. For derivations and definitions of these
error measures see Sweeder or Sahler (165). - o

Both the estimated probability density function and »
cumulative distribution function are compared with other
estimation techniques. Tables 4 and 5 show the results T

of these comparisons. The results of the density function

comparisons indicate that the new estimator is clearly

superior for platykurtic distributions, equal to the best Tl
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previous estimates for mesokurtic distributions, and
slightly 1inferior to Sweeders for 1leptokurtic
distributions. A small number of cases have been run in
-each of the distribution classes with Cauchy, exponential,

and various beta distributions. These additional ruams

show that uniform, normal, and double exponential distri-
:f butions are indeed representative of these other distribu-
k . tious.

The plots shown in Figures 11 to 16 demonstrate graph-
¢ ically the ability of the estimator to fit various
b densities. The normal, uniform, and double exponential
El plots show the maximum likelihood estimate (parametric)

for the random sample. Actual data show that the non-

parametric estimate has smaller MISE than the parametric
; estimate for the normal 31X of the time for sample size
100. These plots are the begst results obtained from one
hundred random samples from each distribution. The
following plots, Figures 17 to 21, are the best results
obtained from ten samples, each of size one hundred, from
the distributions shown.

The results for the distribution function are quite
similar, showing consistent improvement over the empirical
distribution function, and errors comparable to the ex-
tremely good values achieved by Sweeder. Note that the
estimator was "optimized” to provide a good density

estimate. Improvement in the estimate of the distribution
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Figure 20 -

True and Estimated Cauchy pensities (a=100)

Tt -‘-‘-‘-"""-'-'-"l‘.‘.'-‘-“"-‘.'< S
» - - - - - - L) - - - - - - . L} - - . -~ > ; o .t
- \A. NS AT R A NN . RS S A\‘A-l.‘ AR




LAt

T

T

Vavd-.r
S -

T

L sl e o

(001=u) sdj315uaq aeyn3ueja] ayqnoQ pajlewj3Isy pue ana] - [Z 2in8j4

00°¢L

00°'9 oohm (111} 4 00°¢e 002 001 00°0

02 °

NOILONN4 A1ISN2Q

n'Lo

.

73

. .
~ .

B
-,

-{ l:”

S e e e
..f-&{f’.’:’-

»
&



L e Ty — T —

function is possible 1f one does not worry about the den-
sity function. During the development of this estimator,
it appeared that fewer smoothing operations would improve :jf;

the quality of the distribution function estimate slightly. -

Figures 22 to 24 show the actual, estimated and

empirical distributfon functions corresponding to the
estimates shown in Figures 14, 15 and 16 respectively.
The improvement over the empirical distribution funetion
is clearly evideat 4in these plots. Also notice the

smoothness of the estimated distribution function.
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IvV. Applications.

This section deals with ways of applying the new

-estimator derived in the previous chapter. The first

application, distance estimation, is included here because ot
one frequently wishes a simpler formulation for the den-
sity function in order to perform some other application. :ffﬁ
The amall sample analysis section demonstrates the use of 22;4
the new distribution functioa to perform a task which {is
poorly accomplished by the more traditional distribution

function. The two sample test uses the estimated densgity

directly to improve the power of an existing test. Many
more applications are possible, and a few of these are

h discussed in the section on other applications.

IV.l Distance Estimatfion

One of the problems with non-parametric estimators {s
the difficulty in using the resultant estimate. This is
due to the form of the estimator and the number of
"parameters” required to specify which of the members of
that form 13 the estimate. For instance, {in order to
completely specify the proposed density estimate at least

- 2n+4 "parameters” and possibly as many as 3n (depending on

subsample endpoints) are required. It would be useful to
reduce the number of parameters by converting to another

functional form. A logical approach to this 1is to try to
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convert the non-parametric estimate to one member of a
family of parametric distributions. This has been accom-
plished through minimum distance estimation.

- In general, the minimum distance estimate is a set of

parameter values minimizing some distance function defined

{in terms of the hypothesized probability structure and the

sample generated estimate. Originally developed by ili
Wolfowitz (234), minimum distance estimation attempts to ;;i
match the entire probability structure (rather than the ;i;
moment structure) of the data with a specified model. R
Minimum distance estimators have been proposed by Beran e
(12), Parr (135), Daniels (35) and others (See 136) and :g%
have been shown to possess some significant robust charac~ ;:c
teristics. However, most of the Monte Carlo investiga- iﬁa

tions of these estimators have been confined to distribu-

tions close to the normal.

A series of logical candidates for the distance

estimation task was considered. These include:

1) General Exponential Power Distribution. This distri- Ei;i
bution models symmetric data which can be extremely lepto- ;%%
. kurtic or platykurtic., Extremes of the distribution occur :i?%
‘ at the uniform model, where p = infinity, and at the ﬁza
double exponential, where p = 1, Moderate tail lengths are ;f%
a function of the shape parameter, p. For p = 2, the Agﬁé
distribution becomes Norla}. The probability density ;33

function 1is:
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f(x;p,p,0) = [pglp)/2T(1/p)olexpl-|g(p)(x-p)/o|P)
g(p) = [T(3/p)/T(1/p)}*>

- -0 X, B o 0 <o <o 1 <p <w

2) Generalized Beta Distribution. This distribution

f models a wide variety of shapes over a bounded interval, 5;;:
i [a,b). Symmetric, asymmetric, and U-shaped distributions e
: N
are possible. The uniform model is a special case. The ’ 4

wide variety of shapes and finite support (which always

.

occurs for "real life” data) make this family especially
attractive. The fact that common densities such as the l::“
Normal, Exponential, etc. are not included in the family iﬁk;
is a detriment. The probability density function 1is: R
*
!w»\w—1
£(x;p,q,a,b) = (x-a)P " 1(b-x)971/[B(p,q)(b~a)P*9"]) ;;;gi
B(p,q) = T(p)T(q)/T(p+q) S

a {x<b 0 <p <Kwm 0 < q < w ]

3) Generalized Gamma Distribution., This distribution
models asymmetric data on the half open interval {c, ). %¢f4
An important distribution in life testing, the generalized S
Gamma includes the negative eiponential as a special case.

The density function is:

£(x3a,b,c,p) = p(x-c)PP lexp{~[(x-c)/alP}/aPP (D)

0{ec<{x<Kw 0 < a,b,p <
80
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Pf 4) Generalized t Distribution. This distribution models fiﬁ;
b symmetric data with moderate to extremely leptokurtic "_.'j]‘
{ distributions. As the degrees of freedom parameter, n, :ygﬂ
- AN
- _approaches infinity, the distribution approaches the }iﬂ
KN '_:":\-'
i normal, For n=1, the distribution reduces to the Cauchy. _'-;_;
P The general density function 1is: 1
- 1
2 3
3 £(x; p,0,0)= [(a+1)/2][14(x=-w)2/02a) "2+ 1)/ 2/ r(a/2)o(mn)"5 ~
F -l x,p < 0 C 0< o 1 {n<w

b

- 5) R-S Distribution., This distribution was originally

- developed by Ramberg and Schmeister (155) to generate
& random variates. It i1s a generalization of Tukey”s lambda
function (205) and can be used to model a wide variety of
data shapes., The probability density function is given in

- terms of the percentile fuanction, R(p).
f(x;p,a,b,c,d) = £(R(p)) = (Cpc-l'i'd(l-p)d_l)/b
5 R(p) = a+(pS-(1-p)%d)/b

- -0 < a < x <w -0 < b,c,d o 0

(e
©
| Fay
—

6) Generalized Life Model. Developed by Moore and
Bilikam, this model includes as special cases the Weibull

iy and the Raleigh distributions. The probability function

N is given by:
4

R

LSRN

.. NSAS
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£(x;a,b,g(x)) = bg~(x)(g(x))? lexp[-(g(x))P/a)/a

g(x) ¢ R lim+ g(x) = 0 lim g(x) = o
x—>0 x> 00

g(x) strictly iancreasing 0 < x,a,b < o

The Generalized Beta Distribution was chosen as the
family to cousider for parameterizing the estimate,. The
distance measures coasidered were those discussed 1in
Chapter III, and approximate MISE was chosen as an accept-
able measure based upon tests of ten samples and the
variability of the measure. Both the estimated prob-
ability density function and estimated cumulative distri-
bution function were evaluated in the minimization schenme,
but the probability density function based method was
eliminated due to convergence problems in the optimization
procedure and the frequency of local minima.

The distance measure was minimized using the routine
ZXMIN on the International Mathematical and Statistical
Libraries. For each sample three starting points were
used which were chosen as the minimum distances out of a
grid of eighty-one points. The Beta parameters were
bracketed by choosing the largest spike in the non-para-
metric estimate of the density and adjusting the sizes of

P and q by the ratio of the number of points to the
ma

max X

left of the average of x(l) and x(n) to the number of

points to the right of the average.
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Points to Left of Average .
Points to Right of Average :

j/(n+l)
X(1)7X(1-3)

) B = max

1 =1,2,...,n -3 = 1,2,...,n

Then

Puax = max(3,B/R)

Qpax = max(3,BR)

The points for evaluating the distance function were then

chosen as:

Py = 1pmax/10 i=1,2,...,9
F qi = 1qmax/10 1 = 1,2,...,9 -
The distance measures were calculated at each of the

i JESAEC

eighty-one starting points and the best three points were

chosen for starting a modified gradient search, If two of

. v v
T 8

2w
D

the three starting points did not converge to the same

~ -
‘

i : Beta parameters, additional starting points were chosen.
If the parameters converged to some point outside pg,, OT Zf:
Qmax then additional points were checked to investigate -

the possibility of a local minimum,

AR AN OSSR
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Table 6 - Average squareerror forbasicand
parameterized estimates, a=100

Average Square Error
Distribution pdf CDF
Basic Beta fit Basic Beta fit
' Cauchy .0143 .1135 .00270 .00301
[ ) Laplace .0059 .0355 .00151 .00906
; Normal .0012 .0003 .00054 .00022 .
A Uniform .0048 .0041 .,00104 .00042 '
Beta(.6,.8) .0061 .0020 .00181 .00127
Beta(2,3) .0010 .0006 .00054 .00038 -

Results of the distance estimation using a beta dis-
tribution are shown in Table 6. For beta family and -
distributions with lighter tails than the normal the
method resulted in acceptable estimates. For distribu-
tions with heavy tails, double exponential, Cauchy, etc.,
the method results in a poor fit. This {s reasonable

since the beta distribution has lighter tails tham the

normal even as the support becomes very large. -

r

A

k. The distance estimation results are based upon medians

; of twenty-five minimum distance fits to each of the dis-

»

i. tributions, The small number of runs was a result of -

&j difficulties in getting the minimization procedure to

; converge and the large number of local minima, particu-

3 larly with the more leptokurtic distributions. 5
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1V.2 Application to Small Sample Analysis

There are many instances where the cost of obtaining a
'slngle sample point of a random variable is extremely
high. This is particulatly true {n instances of testing
or analyzing complex physical systeas, for example air-
craft stress analysis, In these cases, one is sometimes
asked to make an estimate based upon a mere handful of
data points., The estimator we have developed can be used
as a variance reduction technique in cases such as these,.

As a theoretically interesting example, coasider the
determination of 7 by a Monte Carlo techanique. If we
counsider a circle inscribed within a unit square as {n
Figure 25 and generate uniformly distributed raandonm

variable pairs (x,y) om ([O0,1) x [0,1], then the




probability of any (x,y) pair lying within the circle is
equal to the ratio of the circle”s area to the square’s
area or /4, If we wish to calculate an estimate of 7 we
.may do so by taking the ratio of hits, (x,y) pairs within

the circle, to total pairs generated and multiply by 4.

= Pairs in Circle , ,
Total Pairs

Another way of looking at this problem 1s to define a

new random variable
z = x2 + Y2
then:
T o= 4B(z < 1) = 4F,(1)

If we calculate the distribution of z we may estimate 7 in
this manner.

Figure 26 shows the results of estimating m by the
Monte Carlo method and by the distribution function
method. The curves shown for the distribution function
method are based upon Monte Carlo analysis with one
thousand repetitions at each sample size (2,4,5,10,20,
40,100). The curves for the Monte Carlo method are deter-
mined using binomial probabilities. 1In addition, the per-
centage of times the distribution function method beat the
Moate Carlo method was calculated. Table 7 presents these

results.
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This analysis would tend to fndicate that for this
type of problem one would wish to use the distribution
function method for sample sizes less than about fifty
-rather than lnferriang information directly from the sample

itself. This is certainly true when sample sizes get down

to about five. Note that if a larger number of samples 1is
available the Monte Carlo method is preferable when a

single point in the distribution is sought. C

Table 7 - Distribution Function Method Compared to
Monte Carlo Method. S

Sample Percent Equal to or Better {d 1
Size than Monte Carlo
2 97
4 82
5 72
10 58
20 54 .
40 54
100 41 %

IV.3 Percentage Point Estimation

A natural extension of the case presented in the last

section is the estimation of a percentage point of a

distribution. Figures 27 and 28 shows the 95 confidence

intervals for the error in estimating percentage points of -

.
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the uniform, normal, and double exponential distributions.
The errors shown are actual squared error calculated
from 100 random samples of sizes ten and 100 from each of

the distributions. The horizontal axis data 1is first

; scaled to make F-1(.99) - F'l(.Ol) = ] for each distribu-

é ’ tion. Then the plotted values represent:
[F-1(1/100)-¥"1(1/100))2 1=1,2,...,99

Ninety-five percent of the errors are less than or equal
to the curves shown, In all cases, the median error was
approximately one order of magnitude smaller than the 95%
confidence bound.

Although the errors appear to decrease as one esti-
mates a point farther out in the tail of a distribution,
this 1is not entirely accurate. For distributions with
infinite support the errors increase again as a smaller
percentage point 1is estimated. This is due to the inher-
ent finite support of the estimator. A reasonable guide-
line would be that the sample size should be, as a mi{ni-
mum, approximately equal to the fnverse of the desired
perceatage point. That is, 1f we wish to estimate X 001
we should start with a sample size of about 1000 or
greater points. The increase of accuracy near the extreme
percentage points apparent in Figures 27 and 28 is due

primarily to the accuracy of the endpoint estimate. -
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IV.4 Two Sample Test

The classical two-sample tests take two random samples
from independent distributions and test for some simi-
larity (equivalence, same location, same scale) in the
underlying distribﬁtions based on the sample. The usual
approach is to combine the two samples finto one and use as
a test statistic some function of the ordering of the
combined sample. Some popular tests of this genre are the
Wald-Wolfowitz test (218), the Smirnov test (190), the
Cramer~von Mises test (56), the median test (56), and the
Mann-Whitney test (117). Many other two-sample tests
exist, but none use the samples independently to evaluate
a probability density function and then use the resultant
density estimates {in testing the null hypothesis. There
are two good reasons for this., The first is that theo-
retical distributions of the test statistic are virtually
impossible to derive due to the complexity. The second is
that the nolsy properties of a density function estimate
can tend to obscure the true underlying density unless the
estimator is very good indeed. The first problem can be
somewhat overcome by using Monte Carlo methods to develop
the critical values of the test statistic. The secoad has
not, to this author’s knowledge, been previously success=-
fully attempted.

The ability to generate a density function which

accurately represents the sample”s underlying density
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suggests that a test of the hypothesis that two samples

come from the same listribution might be more powerful if

performed upon the densities

functions,

rather than on distribution

Power studies on two-sample tests are not

generally available in the literature, mostly due to the

difficulty in picking one of the infinite alternative

distributions to test against.

The two-sample Smirnov

Test 1Is generally felt to be as powerful as any (56) of

the popular two-sample tests and will be used for compari-

son purposes in the development of a new two-sample test.

The uniform, normal, beta (1,3), beta (.5,.5), and

Laplace distributions, all with zero mean and unit vari-

ance, were used as representative distributions im the

development of the c¢ritical values. One hundg&? estimates

were made from samples of sizes ten and one hundred from

each distribution.

The test statistic used was the inte~

grated absolute error between all possible combinations of

two estimates.

This resulted in 4950 samples of the test

statistic for each distribution, a total of 24750 points.

The null hypothesis to be tested was:

Hoz Fo’Fl

or fo. fl

against the two~sided alternative hypothesis:

or fo*fl
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Tests using both the cumulative distribution function and
the probability density function were developed and com-
pared to the Smirnov test applied to the same samples.

The critical values of the test statistic are given in

Table 8. The cumulative distribution function test

I ) Table 8 =~ Critical Values of the Two-Sample
Test Statistic

Significance CDF Test pdf Test
Level
n = 10 n = 100 n =10 n = 100
; 001 10.258 .07861 1.3814 01130
' .005 10.185 .07707 1.1618 .01058
.01 10.043 .07601 1.1294 .00988
.05 4,1517 .03263 .6989 .00711
.10 2.6214 02067 4915 .00484
.15 2.1287 .01339 .3467 .00436
.20 1.7304 .01108 .2975 .00400
.25 1.4039 .00953 .2491 .00375
.30 1.0826 .00792 L2041 .00352
.35 .8904 .00654 .1179 .00336
.40 7795 .00536 .1609 00319
.45 .6610 .00467 .1454 .00305
.50 .5487 .00410 1291 .00292
94
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statistics are calculated using the same results as those

used in the pdf critical value computations. They are

given primarily to allow a direct power comparison with
-the Smirnov test for this particular set of samples.

The critical values in Table 8 were used in a power
study with all possible combinations of the chosen

samples., This resulted in 10000 samples from each pair of

dissimilar distributions. The power of the test was cal-

culated by taking the proportion of samples correctly

rejected as failing to meet the hypothesis. Tables 9, 10,

2

11, 12, 13, and 14 show a comparison of the powers of the

three tests.

The power studies indicate that:

1) The test based on the new probability density

function is consistently more powerful than the cumulative
distribution function based test developed here.

2) The Smirnov test is slightly more powerful than

the probability density function test for uniform alterna-
tives.

3) The test based on the probability density func-

tion is clearly superior for differentiating a normal from
a double exponential sample.

Figures 29(a) and (b) show the distribution and den-
sity functions of the distributions used in the power

studies for this test. One could argue that the normal

and double exponential are more clearly distinquishable in
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the densities. This {s not as true for the unlfori. This
could be the reason for the improved pover of the prob-
ability density function test over the Smirnov test,

The power differences might lead one to develop a two-

sample test which mixes the results of both the tests dis-

cussed in this chapter to obtain an "optimal” test statis-

tic. This "optimal"” statistic would be a function of some

shape statistic, such as a modified Hogg"s Q or a modified
kurtosis. It might also be a function of sample size,
although the sample size appears to have only a small
effect.

The two~sample test developed in this chapter shows
clear superiority over an effective classical test wunder
some circumstances. Additional research in this area 1is

discussed in the Summary and Recommendations.

IV.5 Other Applications

Sample distribution functions have long been used {n
the areas of non-parametric goodness-of-fit tests, two
sample tests, and tests for equality of some moment or
other property of the distribution underlying a sample.
The density function has seen little use in this ares for
two reasons:

1) It 4s difficult to calculate a estimate of the
density, with the nice properties that already exist for

the sample distribution function.
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2) There has been no particular motivation to calcu-

late the density.
The first reason is a valid one. In the case of the
-gsecond reason there should have been some motivation,
since the density estimate can provide additional
information which 1s particularly useful {n small sample
situations.

In order to see the utility of the density function,
and grasp the 1dea that further information is provided,
it 1is 1instructive to coansider a simple case. The
Kolmogorov-Smirnov statistic (or any of several related
statistics) 1is frequeatly used {n various noa-parametric

tests. This statistic is defined as:
Sp = sgp [P (x) - Fy(x) ]
If there were no further information to be gained from the

density function then one would expect that a similar

statistic defined for the density function,
Sg = sup [£,(x) = £5(x)]
would be determined at the same point, x, as Sp. That {s,

1f we consider continuous functions and define the points

where the maxima occur as:

sg = |£)(x)) = £5(x))|

104




o e SRR Al son= v e hai s sos 2 w o g P— P . o
A e T TR TN e e 2 Bt e avits o L .- Mg

LN Zani Santh Sadh Jgh s et

and

Sg = li;l(XZ) - i‘z(xz)l

then x; = x,. This i3 not true in general. Couansider the
case where 51 - %2 {s a continuous function. Then we know

that at max |§1 - §2|,

d/dx (Fl - Fz) = fl - fz = 0
if the maximum 1is interior to the interval of definition,
We also know that P(il - iz = 0 for all x) = 0 implies
P(Sg=0) = 0 and P(x;) = 0 for a continuous distribution

and any single point (consider an endpoint), x4, thus
P(xl'x:) = P(;l = %2) + P(xl'xZ-xi) = 0

so the point associated with Sy is not the same as the
point associated with Sgs and different information {is
obtained with each of the functioas.

Based upon this reasoning, it seems safe to conclude
that any test which has been performed with the sample
distribution function can be improved by using the sample
density function estimate derived here. This 1is not to
imply that sample distribution function methods should be
discarded, but rather that they should be augmented by a
similar procedure using the density function esti{mate,
The quality of such tests has already been demoastrated.

Goodness—~of-fit tests and multiple sample tests are

logical extensions of this work.
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V. Guidelines for Using the Estimator.

One always has the choice of using a parametric or
non-parametric method of estimating the density. The
choice is really whether or not one has enough knowledge
to be able to select the distributional form a priori.

The alternative is to rely upon the "gods of chance” and

let the data determine the distributional form and

“parameters”, Using a non-parametric method 1is, in a
sense, taking out an insurance policy. The premium will
determine whether or not the policy 1s cost effective,
Classical estimation relies on the cholice of a set of
parameters from an assumed underlying probability dis-
; tribution. 1In general, the underlying distribution 1is
selected by extra-mathematical means and is done sepa-
rately from the parameter estimation. As Fisher (52)
stated in 1922, when discussing the problem of specifica-

tion (as he called the selection of an underlying density

function): qul

) “As regards problems of specification,

these are entirely a matter for the practical - -
statistician, for those cases where the R
qualitative nature of the hypothetical popu- j_;ti
lation is known do not involve any problems of AR,
this type. In other cases we may know by L
! ) experience what forms are likely to be suit- " J

able, and the adequacy of our choice may be
tested a posteriori. We must confine ourselves RO
to those forms which we know how to handle, or }}ﬂ?i
for which any tables which may be necessary RN
have been constructed.”
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Unfortunately, we are often not blessed with the in-
sight necessary to correctly select the underlying distri-
bution. Thus, attempts have been made to determine the
‘form of a sample (goodness-of-fit) or to protect against
incorrect assumptions by making the procedures robust
(s, 8,22,23,35,53,55,66,67,72,79,81,82,83,86,109,127,135,
163,198). Traditional goodness-of-fit tests have low power
for small samples. There are penalties to pay for any
form of protection derived by making the estimate more
robust, just as there are penalties for assuming the wrong
density form and blindly applying classical procedures.

Probably the most common way to analyze data is to
estimate the parameters of a distribution using an
assumed probability law. Classical methods of parameter
estimation abound, including the maximum likelihood method
and the method of moments. Frequently, certain proper-
ties of estimators are required, such as: unbiasedness,
invariance,or linearity. These further restrict the class
of estimators considered and one can usually define a
"best” estimator within a certain class. All of these
methods assume a parametric model of the data.

An analysis of the new density estimator presented

here shows one what the "premiums” are for using this "

estimator rather than a maximum likelihood parametric ~&j

estimator, (Although the maximum likelihood estimate is ﬁj

not necessarily the "best”, it is well known and easily ."‘l

o
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calculated for comparison purposes.) The specific'estima-

tors used were:

Uniform [a,b]:

a ’X(l) ;'X(u)

Normal (u,oz):

n
; = X &2 = 1/a E (xi-;)z
i=]
Double Exponential (u,o):
n
B = median{xy} o2 = 1/n [ %y |
i=1

One hundred samples of size 100 and of slze ten were
generated from each of the three distributiouns, all with
zero mean and unit variance. The approximate MISE was
calculated for both the cumulative distribution function
and the probability density function using both estima-
tors. The medians of the errors calculated were used to
generate the tables in this section.

First the ratio of the errors:

Estimator Error
Max Likelihood Error

was calculated for each of 'the cases. These data are

presented in Tables 15 and 16. The obvious conclusion {is T
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Table 15 - CDF Median Error Ratios (ASE) . 1
Sample Size Uniform Normal Laplace %
k 10 1.405 8769 2.234 B
100 6.913 .8553 10.21

Table 16 - Pdf Median Error Ratios (ASE)

Sample Size Uniform Normal Laplace
10 1.133 1.279 1.581
100 1.097 1.496 7.425

that for small sample sizes the penalty for using the new
non-parametric estimator, even when one suspects the
underlying distribution, may not be too large. It is also
interesting to note that the non-parametric estimate for

the normal cumulative distribution function is coasis-

tently better than the parametric maximum 1likelihood

estimate. The non-parametric estimate resulted in lower

error for 74% of the samples. )
Since the entries in Tables 15 and 16 are ratios, a
decision of whether or not one can accept the degradation ‘:

in the estimate is dependent upon the actual error values.

Tables 17 and 18 show the median error values calculated

for the same samples. 1In general, the errors are quite .“A
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Table 17 - Median MISE for Estimates of CDF
Sample Size Estimate Uniform Normal Laplace
10 New .00811 .00667 00748
10 Max Lik .00443 .00960 00394
100 New .00030 .00054 .00270
100 Max Lik .00004 .00075 .00021
Table 18 - Median MISE for Estimates of Pdf
Sample Size Estimate Uniform Normal Laplace
10 New .0135 .0101 0261
i0 Max Lik .0103 .0072 .0146
100 New .0011 .0011 .0066
100 Max Lik .0008 .0008 .0008

low for many applicatioans,

thus one may be willing to pay

the "premium"” for using the non-parametric estimate.

tion in advance.

penalty in this case,

but

err

.........

The alternative is to select the underlying distribu-

cases.

One may potentially pay a different

that of selecting the wrong distri-

ion. Tables 19, 20, 21, and 22 show the comparable
ors for selecting the wrong distributions in these
110
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Table 19 -~ Median CDF MISE for Maximum
Likelihood Estimate

n =10

Actual Distribution

Uniform Normal Laplace
Uniform .00443 .02447 .03772
Assumed
Normal .02364 .00960 .02738
Distribution
Laplace 03311 .01999 .00394%

Table 20 - Median Pdf MISE for Maximum
Likelihood Estimate

n =10

Actual Distribution
Uniform Normal Laplace
Uniform .0103 .1003 .1305
Assumed
Normal .0866 .0072 .0951
Distribution
Laplace 1121 .0888 .0146
Table 21 - Median CDF MISE for Maximum
Likelihood Estimate a = 100
Actual Distribution
Uniform Normal Laplace
Uniform .00004 .03333 .05805
Assumed
Normal .0379%0 00075 00367
Distribution
Laplace .04988 .00471 .00021
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Table 22 - Median Pdf MISE for Maximun
Likelihood Estimate n = 100

Actual Distribution
Uniform Normal Laplace
Uniform .0008 .0588 .0900
Assumed
Normal 0421 .0008 0077
Distribution
Laplace 0847 .0079 .0008

One may be tempted to say that the Qdiscriminant pro-
babilitlies i{n Tables 1 and 2 coupled with the errors in
Tables 19 through 22 could lead to an adaptive parametric
estimator with smaller expected error than the non-para-
metric estimator. This 1s true; however, one 1s seldom,
1f ever, in the situation where a selection between only
these distributions needs to be made., In the real world a
selection must be made from a continuous space of distri-
butions, The parametric estimator will pay a penalty
based upon the distance between the assumed distribution
and the actual distribution, The non-parametric estimator
is more likely to pay a penalty related to some measure of
the shape of the underlying distribution.

The question of what estimator to use ultimately
depends its specific use. However, for many cases where
there is uncertainty about the underlying distribution,

and where the sample size i3 small, the risk im using the
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non-parametric procedure outlined in this paper is smaller
than the risk associated with using a maximum likelihood

estimate.
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VI. Suamary and Recomumendations.

A new non~-parametric density estimate has been

developed which has the following properties:

1) It is continuvous and plecewise linear.

2) 1t converges to the true density function 1if the
true density has no more than a finfite number of discon-
tinuities of a form where the value at the discontinuity
can be considered the average of the limiting values on
either side of the discontinuity.

3) It requires no user supplied parameters.

The estimator is shown to have significantly better
error properties, for certain classes of distributions,
than existing density estimators. The quality of the
estimate I8 discussed, tabulated and graphically demon-
strated. Applications, including parameterization, small
sample analysis, and two sample tests are presented.
These newly developed applications are shown to improve
upon the generally accepted existing techniques. Guide-
lines for choosing a density estimation method along with
a discussion of an approach to method selection are pre-
sented.

Research opportunities in the field of density estima-
tion and 1its applications have been expanded by this
research, In particular, the applications shown have

demonstrated the utility, versatility, and strengths of
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E density based techniques. Some of the possible extensions

of this effort are:

- 1) Extension of the technique to multivariate density

estimation.

2) More exhaustive analysis of the two sample test
should be made to better bound the critical values and
power of the test. Theoretical developments 1in this area
may be feasible.

3) Some of the endpoint estimation techniques show
promise as tail length discriminators. Additional re-
search along these lines could lead to better methods of
tail classification and support definition,

4) Goodness-of~fit tests using the same technique as
the two-sample test should be more powerful agalast some
alternatives than existing tests., 1If used in conjunction
with existing tests, they should always 1increase the
power.

5) New techniques of searching the objective space in
minimun distance estimation could lead to more effective
parameterization of the density. At least a four param-
eter family 1s probably necessary to cover unimodal
densities. Search time 1is prohibitively expeasive using
the scheme presented here to find a global minimum of the
distance norm {n four parameter space and evaluate it

thoroughly.
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